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Abstract 
 

Conventional advice discourages controlling for post-outcome variables in 
regression analysis. Here, we show that controlling for commonly available post-
outcome (i.e. future) values of the treatment variable can help detect, reduce, and even 
remove omitted variable bias (unobserved confounding). The premise is that the same 
unobserved confounders that affect treatment also affect future values of the treatment. 
Future treatments thus proxy for the unmeasured confounder, and researchers can 
exploit these proxy measures productively. We establish several new results: Regarding a 
commonly assumed data-generating process involving future treatments, we (1) introduce 
a simple new approach to reduce bias and show that it strictly reduces bias; (2) 
elaborate on existing approaches and show that they can increase bias; (3) assess the 
relative merits of approaches; (4) analyze true state dependence and selection as key 
challenges; and (5) demonstrate that future treatments can test for hidden bias, even 
when they fail to reduce bias. We illustrate these results empirically with an analysis of 
the effect of parental income on children’s educational attainment. 
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INTRODUCTION 
 
FUTURE-TREATMENT STRATEGIES 
Hidden bias from unobserved confounding is a central problem in the social sciences. If 
unobserved variables affect the treatment and the outcome, then regression and matching 
estimators cannot recover causal effects (e.g., Rosenbaum 2002, Morgan and Winship 
2015). One set of strategies for mitigating confounding bias that has been used in 
scattered contributions from sociology and economics involves future treatments, i.e. 
values of the treatment that are realized after the outcome has occurred. The basic 
intuition behind these strategies is that the same unobserved confounders that affect the 
treatment variable before the outcome often also affect future values of the treatment 
variable, measured after the outcome. If so, future values of the treatment are proxy 
measures of the unmeasured confounder and may help remove bias. 

A few authors have previously appealed to this intuition and proposed a variety of 
different estimators. For instance, prior research has exploited future treatments in 
structural equation models (Mayer 1997), used future treatments to measure and subtract 
unobserved bias (Gottschalk 1996), and employed them as instrumental variables 
(Duncan et al. 1997).1 We will critically assess some of these earlier strategies and 
compare them to our simpler proposal to use future treatments as control variables to 
remove bias by proxy. 

We posit that future-treatment strategies hold significant promise for social science 
research for several reasons. First, future treatments can help detect, reduce, and even 
remove bias from unobserved confounding. Second, future values of the treatment are 
routinely available in panel data. Third, since future-treatment strategies require only that 
the treatment variable varies over time (i.e., not the outcome), they are available even 
when individual-level fixed-effects panel estimators are not. Fourth, since different 
future-treatment strategies impose different assumptions about the data generating 
process, they are applicable across a wide range of different substantive settings. 

In this paper, we analyze several prior uses of future-treatment strategies and propose 
a new strategy. We discuss the conditions under which future values of the treatment can 
reduce or remove confounding bias. We also highlight the conditions under which future-
treatment strategies introduce more bias than they remove. Specifically, we show the 
challenges of using future-treatment strategies in two scenarios: where the outcome 
affects future treatment (selection), and where past treatment affects future values of the 
treatment (true state dependence). Yet, even where future-treatment strategies fail to 

                                                
1 Other examples of research that purposefully subverts the common temporal order include the 
correlated random effects model proposed by Chamberlain (1982) as well as other applied 
contributions that consider a comparison group that only experiences treatment in the future, such 
as future incarceration (e.g. Grogger 1995; Wildeman 2010; Porter and King 2014;) or a future 
network tie (e.g. Kim et al. 2015). 
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reduce bias, they may still be useful for detecting the presence of bias; and we discuss a 
non-parametric test for bias detection using future treatments.   

We investigate the performance of future-treatment strategies across a range of data 
generating processes, and assess their relative performance compared to regular 
regression estimates without corrections for unobserved confounding. We present our 
analysis in two complementary formats. First, we present our analysis graphically to 
assist applied social scientists in determining quickly whether a future-treatment strategy 
is appropriate for their specific substantive application. Second, we assume linearity to 
link our graphical results to familiar regression models and quantify biases. (Appendices 
discuss related approaches and instrumental variables estimation with future treatments.) 
Finally, we illustrate the application of future-treatment strategies with an empirical 
example that estimates the effect of parental income on children’s educational attainment. 
 
PRELIMINARIES: DAGS, LINEAR MODELS, AND IDENTIFICATION 
In this section, we describe the tools of our formal identification analyses, following 
Pearl (2013). Since the causal interpretation of statistical analyses is always contingent on 
a theoretical model of data generation, we first review directed acyclic graphs (DAGs) to 
notate the assumed data-generating process (DGP). Second, we state Wright’s (1921) 
rules, which link the causal parameters of the DGP to observable statistical associations 
(covariances and regression coefficients) in linear models. Readers familiar with DAGs 
and Wright’s rules may prefer to skip this section.2  

We use DAGs to notate the causal structure of the analyst’s presumed DGPs 
(Pearl 2009; for an introduction, see Elwert 2013). DAGs consist of variables, and arrows 
that represent the direct causal effects between variables. We will focus on DAGs 
comprising four (vectors of) variables: a treatment, !, an outcome, ", a future (post-
outcome) value of the treatment, #, and a vector of unobserved variables, $. In keeping 
with convention, we assume that the DAG shows all common causes shared between 
variables, regardless of whether these common causes are observed or unobserved. For 
example, in the DAG ! ← $ → ", $ represents all unobserved common causes between 
! and ".  

DAGs empower the analyst to determine whether the observed association (e.g. a 
regression coefficient) between treatment and outcome identifies the causal effect or is 
biased. The observed association between treatment and outcome identifies the causal 
effect if the only open path connecting treatment and outcome is the causal pathway, ! →
". The association between treatment and outcome is spurious, or biased for the causal 
effect, if at least one open path does not trace the causal pathway (e.g., ! ← $ → "). 
Whether a path is open (transmits association) or closed (does not transmit association) 
depends on what variables are controlled in the analysis, and whether the path contains a 
collider variable. A collider is a variable that receives two inbound arrows, such as ' in 
                                                
2 Throughout, we assume large samples in order to focus on identification.   
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( → ' ← ) (see Elwert and Winship 2014). A path is closed if it contains an 
uncontrolled collider, or a controlled non-collider; and is open otherwise. 

Unless otherwise stated, we assume a linear DGP, the conventional workhorse of 
social science. The assumption of linearity may not always be terribly realistic, but it has 
the advantage of convenience, as it links DAGs directly to OLS regression and 
conventional SEM methodology. Under linearity, DAGs become linear path models, and 
every arrow in a linear path model is fully described by its path parameter, *, which 
quantifies its linear and homogenous direct causal effect. Since path parameters are 
causal effects, they cannot be observed directly.3 

Without loss of generality, we assume standardized variables throughout (zero 
mean and unit variance). Standardized path parameters cannot exceed 1 in magnitude. To 
prevent model degeneracies, we assume that all path parameters lie strictly inside the 
interval (−1, 1) and differ from zero: −1 < * < 1 and * ≠ 0. 

Wright’s (1921) path rules link the unobserved path parameters of the presumed 
linear DGP to observable covariances. 

 
Wright’s (1921) path rule: The marginal (i.e., unadjusted) covariance between two 
standardized variables ( and ), σ45, equals the sum of the products of the path 
parameters along all open paths between ( and ).  
 

That is, to calculate the marginal covariance between two variables A and B, we first 
compute the product of the path parameters for each of the open paths between A and B, 
and then sum these products across all open paths.  

To link the coefficients of OLS regression (with or without control variables) to the 
underlying path parameters via Wright’s rule, we express the coefficients in terms of 
marginal covariances. The regression coefficient on T in the unadjusted regression " =
789! + ; with standardized variables equals the marginal covariance between " and !, 

  789 = <89 .        (1) 
We call 789 the unadjusted coefficient on T. The partial regression coefficient on T after 
controlling for F in the regression " = 789.>! + 78>.9# + ; is given by, 

  789.> =
?@AB?@C?CA
(DB?CA

E )
 .       (2) 

We call 789.>  the F-adjusted coefficients on T. Analogously, the T-adjusted coefficient on 
# is given by 

  78>.9 =
?@CB?@A?CA
(DB?CA

E )
 .       (3) 

We omit observed control variables (other than #) from the analysis because they do not 

                                                
3 Path parameters are often called “path coefficients.” We write “parameter” to denote true causal 
effects in the DGP, and we write “coefficient” to denote statistical quantities, such as regression 
coefficients, which may or may not equal the desired parameter.  
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contribute to intuition. All of our results generalize to the inclusion of pre-treatment 
control variables.4 

Putting these elements together, the subsequent analysis proceeds in four steps. First, 
we draw the DAG of a candidate DGP. Second, we use Wright’s rule to express the 
marginal covariances between observed variables in terms of the true path parameters. 
Third, we plug these covariances into the formulas for the regression coefficients in 
equations 1-3. Finally, we investigate whether any of these regression coefficients, or 
functions of regression coefficients, equal (or “identify”) the desired causal effect of the 
treatment on the outcome and quantify possible biases.  
 
 
THE PROBLEM: UNOBSERVED CONFOUNDING 
 
Figure 1 highlights problem of unobserved confounding and illustrates our running 
example. 

 
Figure 1. DAG for an observational study of parental income, !, on children’s years of 

education, ", with unobserved confounder(s), $.  
 

The DAG shows the DGP for an observational study to estimate the total causal effect of 
a treatment, ! (e.g., parental income), on an outcome, " (e.g., children’s years of 
completed education). Since treatment is not randomized, the effect of ! on " is usually 
confounded by one or more unobserved factors, $, that jointly affect ! and " (e.g., 
parental ambition).  If so, the unadjusted association between ! and " will be biased for 
the causal effect of ! on ", because the association will be a combination of the 
association transmitted along the open causal path ! → " and the open noncausal path 
! ← $ → ". (If all confounding variables $ are measured, then controlling for the non-
collider $ removes all bias by closing the noncausal path ! ← $ → ".) Henceforth, we 
assume that at least some confounding factors, $, are unobserved. This mimicks the main 
predicament of most observational study in the social sciences.   

If Figure 1 represents a linear model, then, by equation 1 and Wright’s path rule, the 
unadjusted regression coefficient on !, equals  
  789 = <89 = 7 + FG .       (4) 

                                                
4 We assume that controlling for pre-treatment variables reduces bias from unobserved 
confounding, as it usually does. For counterexamples, see Elwert and Winship (2014). 
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This regression coefficient is obviously biased for the true causal effect of T on Y, b. The 
bias equals )HIJ = 789 − 7 = FG, and increases in magnitude with the effects $ → !, F, 
and $ → ", G. Removing this bias from unobserved confounding is the central task of 
observational causal inference in the social sciences.  
 
 
STRATEGIES OF BIAS CORRECTION WITH FUTURE 
TREATMENTS 
 
Future treatments can be used to reduce and even remove bias from unobserved 
confounding, depending on both the analytic strategy (e.g., the chosen regression 
specification) and the DGPs. In this section, we introduce two future-treatment strategies 
under the assumptions of the DGP shown in Figure 2. This model represents a best-case 
scenario for future-treatment strategies and is commonly assumed in the literature (e.g., 
Mayer 1997). The model assumes that the causal effect of ! on " is confounded by one 
or more unobserved variables, $, and that the future value of the treatment, #, is affected 
by all $ that affect treatment, !. In other words, # is assumed to be a proxy measure for 
$. 
 

 
Figure 2. A confounded study where the future value of the treatment, #, is a proxy for 
the unobserved confounder(s), $. 

 
The assumption that all confounders of ! and " also affect # is central for future-

treatment strategies. Because the assumption cannot be tested empirically, it has to be 
defended on theoretical grounds. In many applications, it is eminently credible. For 
example, if parents’ unmeasured ambition, $, affects parental income, !, prior to the 
child completing education, ", it likely also affects parental income after the child has 
completed education, #.  
 
Control Strategy of Future Treatments 
Most future-treatment strategies in one way or another exploit the fact that # is a proxy 
for $. Here, we propose a simple estimator that exploits this fact directly: Since # is a 
proxy that carries information about $, controlling for # in the regression " = 789.>! +
78>.9# + ; partially controls for $ and hence reduces bias in the treatment-effect 
estimate. We call the strategy of bias reduction by outright controlling for # the control 
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strategy of future treatments. 
 

Definition 1 (control strategy estimator): The control-strategy estimator, 7K , for the 
causal effect of ! on ", 7, is given by the F-adjusted regression coefficient on T, 

 7K = 789.> =
?@AB?@C?CA
(DB?CA

E )
 .      (5) 

 
Result 1 evaluates the control strategy estimator for data generated by the DGP in 

Figure 2: 
 
Result 1 (bias of the control strategy estimator in the best case): In data generated by the 
DGP in Figure 2, the control strategy estimator evaluates to: 

 7K = 7 + FG (DBLE)
(DBMELE)

= 7 + )HIJNK  .    (6) 

Clearly, the control estimator remains biased, because 7K ≠ 7. Result 2, however, 
states that the control strategy estimator always improves on the OLS estimator. 

 
Result 2 (strict bias reduction of the control strategy estimator in the best case): In data 
generated by the DGP in Figure 2, the control strategy estimate is strictly less biased than 
the OLS estimate.  
 

To see this, note that the control strategy estimator multiplies the OLS bias, )HIJ =

FG, by the factor NK =
(DBLE)
(DBMELE)

, which we call the bias multiplier of the control strategy. 

Since all path parameters are standardized, the magnitude of the control-bias multiplier is 
always less than 1, |NK| < 1, and hence deflates the OLS bias, |)HIJNK| < |)HIJ|.  Strict 
bias reduction is the key advantage of the control strategy.  

Figure 3 illustrates bias reduction in the control strategy estimator compared to the 
unadjusted OLS estimator by graphing the absolute value of the bias multiplier of the 
control strategy, |NK| (dashed blue line), against the reference of no bias reduction (line 
at |NK| = 1) as a function of the strength of the effect of $ on #, P, for a moderately 
strong effect of $ on !, F = 0.4.5 Clearly, the control-bias multiplier |NK| is always 
between 0 and 1 and hence guarantees bias reduction regardless of sign or size of the 
path parameters. 

The stronger the effect of $ on #, |P|, the more bias is removed. This makes intuitive 
sense: the stronger the effect of $ on #, the better # proxies for $. In the extreme case, 
where # is perfectly determined by $, |P| = 1, controlling for # amounts to controlling 
for $ itself, thus removing all bias, such that 7K = 7. 

 

                                                
5 We pick F = 0.4 for illustration. Results are qualitatively the same for other values of F. 
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Figure 3. Absolute bias multiplier, |N|, for the control estimator and Mayer’s estimator 
as a function of the effect $ → #, P. |N| = 1 indicates no change compared to OLS bias. 
|N| > 1 indicates bias amplification, |N| < 1 bias reduction. Graphed for a moderate 
effect $ → !, F = 0.4.  

 
The control strategy gives applied social scientists a straightforward tool for reducing 

bias from unobserved confounding. All it takes is adding # as a regressor to the 
regression of " on !. To return to our running example, under the model assumptions of 
Figure 2, bias in the estimated effect of parental income measured before children 
complete education will be strictly reduced by controlling for future parental income 
measured after children complete education. 
 
Mayer’s Strategy 
Mayer (1997) takes a different approach to bias reduction with future treatments. Instead 
of simply controlling for # in a regression model, she solves the structural equations of 
the DGP in Figure 2 under the additional assumption that the unobserved confounder, $, 
affects the future treatment, #, exactly like it affects the treatment, !, F = P. This 
assumption may be defensible in some circumstances. In our running example, one might 
hypothesize that parental ambition is relatively time-invariant and affects parental 
income, ! and #, similarly at all times. 
 Under the assumption that F = P, the three observable covariances between !, ", 
and # in Figure 2, by Wright’s rule, are functions of three unknown path parameters, 

<89 = 7 + FG 
<8> = FS7 + FG 

   <9> = FS .       (7) 
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This system is solved uniquely for the desired causal effect,  

   ?@AB?@C
DB?AC

= TUMVBMVBMET
DBME

= T(DBME)
DBME

= 7 .6   (8) 

 
Definition 2 (Mayer’s [1997] estimator): Mayer’s estimator for the causal effect of ! on 
", 7, is given by  

   7W = ?@AB?@C
DB?AC

 .      (9) 

 
The advantage of Mayer’s estimator is that it removes all bias under the assumptions 

that the data are generated as in Figure 2 and that $ affects ! exactly as it affects #, F =
P. However, when $ affects ! and # differently, F ≠ P, then Mayer’s estimator has two 
disadvantages. First, as Mayer (1997) notes, the estimator is biased.7 Result 3 evaluates 
the bias.  

 
Result 3 (bias of Mayer’s [1997] estimator in the best case): In data generated by the 
DGP of Figure 2, Mayer’s estimator evaluates to  

   7W = 7 + FG MBL
MBMEL

= 7 + )HIJNW .    (10) 
 
Second, in contrast to our control strategy estimator, Mayer’s estimator can increase 

OLS bias, as shown in Result 4.  
 

Result 4 (bias amplification in Mayer’s [1997] estimator in the best case): In data 
generated by the process of Figure 2, Mayer’s estimator increases bias compared to the 
OLS estimate when |NW| = | MBL

MBMEL
| > 1. This occurs (1) when M

L
< 0 or (2) when 

| SM
DUME

| < |P|. 
 
In other words, bias amplification occurs either (1) when $ affects ! and # in opposite 
directions, or (2) when $ affects ! and # in the same direction but the magnitude of the 
effect $ → #, P, substantially (roughly more than twice) exceeds the magnitude of the 
effect $ → !, F. 

                                                
6 The first two equations are collinear if past and future values of the treatment are very similar, 
i.e., F = P approaches 1. As F increases, the denominator of Mayer’s estimator, 1 − FS, shrinks 
toward zero. Consequently, standard errors will increase with the magnitude of F. 
7 When F ≠ P, the three observable covariances between !, ", and $, produce three equations 
with four unknowns: (1) <89 = 7 + FG; (2) <8> = F7P + GP; and (3) <9> = FP, which cannot be 
solved uniquely for 7. Mayer (1997: p. 178) seeks to address this scenario by solving for 7 based 
on the F = P assumption but then adjusting the resulting treatment effect estimate for differences 
in F and 7 assuming that they follow the same pattern as differences in the effects of observable 
characteristics measured before and after the outcome. 
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The solid orange line in Figure 3 illustrates bias reduction and bias amplification of 
Mayer’s estimator by graphing the absolute value of the bias multiplier, |NW| across 
values of P for F = 0.4. When F and P share a sign (here, P > 0) and P is not much 
larger than F, then |NW| < 1, and Mayer’s estimator reduces bias.  But if F and P have 
opposite signs (here, P < 0), or if P ≫ F, then |NW| > 1 and Mayer’s estimator 
amplifies the OLS bias. 

The possibility of bias amplification in Mayer’s estimator has not been noted 
previously. Whether bias amplification occurs depends on the empirical setting and must 
be carefully evaluated based on sociological subject matter knowledge. We believe that 
bias amplification can be excluded in many settings. First, in many applications $ will 
not affect ! and # in opposite directions. In our example, it does not appear plausible that 
parental ambition, $, increases parental income early on, !, but decreases it later, #. 
Second, since the shared unobserved confounder $ is by assumption a baseline 
characteristic that is temporally closer to ! than to #, the effect of $ on ! will likely 
exceed the effect of $ on #, i.e., |F| > |P|. In our example, we are cautiously optimistic 
that the effect of early parental ambition is more pronounced on parent’s early income, !, 
than on later income, #, because other determinants of income, such as experience and 
seniority, may grow in importance as time passes.   

On the other hand, we cannot entirely rule out the possibility of bias amplification, 
even in our running example. Suppose, for example, that we analyze the effect of parental 
income on children’s educational outcomes among young parents. Young parents with 
high ambition may still be enrolled in college and hence earn little compared to their 
lower-ambition counterparts who already have jobs. Later, however, these highly 
ambitious parents may become high-earning professionals, whereas their lower-ambition 
counterparts may remain in lower paying jobs. Hence, the effects $ → ! and $ → # 
could have opposite signs, such that Mayer’s estimator would increase rather than 
decrease bias. And even if the effects share the same sign, $ → # may strongly exceed 
$ → !. That is, using our example, if the returns to parental ambition compound as 
employees climb up the corporate ladder, early ambition may have a relatively modest 
effect on early income but a large effect on later income via successive promotions. If the 
effect of early ambition on later income sufficiently exceeds its effect on early income, 
then Mayer’s estimator would also increase rather than decrease bias.  

 
Implementing Mayer’s Strategy as a Difference Estimator 
The original presentation of Mayer’s estimator required customized programming. Next, 
we show that Mayer’s estimator can be expressed straightforwardly as the difference 
between two regression coefficients. This enables estimation via all standard statistical 
software packages and provides additional intuition.  

 
Definition 3 (difference estimator): The difference estimator for the effect of ! on " is 
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the difference between the adjusted coefficients on ! and # in the regression " =
789.>! + 78>.9# + ;, 

 7Y = 789.> − 78>.9 =
?@AB?@C?CA
ZDB?CA

E [
− ?@CB?@A?CA

ZDB?CA
E [

 .   (11) 

 
Result 5 (equivalence of the difference and Mayer’s estimators):  

 7Y =
?@AB?@C?CA
ZDB?CA

E [
− ?@CB?@A?CA

ZDB?CA
E [

= (DU?CA)(?@AB?@C)
(DU?CA)(DB?CA)

= (?@AB?@C)
(DB?CA)

= 7W   ☐  (12) 

 
The equivalence between Mayer’s estimator and the difference estimator holds for all 

DGPs—not just the DGP of Figure 2—, because the definition of the estimators only 
draws on empirical covariances and does not appeal to the structure of the DGP. 

Equating Mayer’s estimator with the difference estimator provides additional insight: 
The idea behind the difference estimator is to use future treatments first to measure and 
then to remove the spurious association between ! and ".  

This fact is best appreciated by investigating the difference estimator under the 
assumption that the effect of $ on ! equals the effect of $ on #, F = P, in data generated 
by Figure 2. First, the coefficient 789.> is biased for 7 by the confounding path ! ← $ →
", less whatever part of confounding is removed by controlling for # (recall that # is a 

proxy for $). Specifically, 789.> = 7 + FG ZDBM
E[

(DBM\)
, where 0 < ZDBME[

(DBM\)
< 1 is the deflation 

factor by which confounding along ! ← $ → ", FG, is diminished by controlling for #. 
Second, the coefficient 78>.9 captures the association flowing along the path ! ← $ → #, 
less whatever part of this association is removed by controlling for ! (like #, ! is a proxy 

for $). Specifically, 78>.9 = FG ZDBM
E[

(DBM\)
, which equals the association flowing along # ←

$ → ", diminished by the same deflation factor 0 < ZDBME[
(DBM\)

< 1 due to controlling for !. 

Third, clearly, 78>.9 equals the bias in 789.>; hence subtracting one from the other yields 
an unbiased estimate for 7.  

Expressing Mayer’s estimator as a difference estimator helps explicate the properties 
that we claimed for it above. First, the Mayer/difference estimator removes all bias only 
if F = P, because only then does 78>.9 exactly measure the bias in 789.>. More generally, 
by Result 3, the estimator equals 7W = 7Y = 7 + FG MBL

MBMEL
 and is biased to the extent that 

F and P differ.  
Second, if F > P, the estimator is biased because 78>.9 understates the bias in 789.>: 

the association captured by the path " ← $ → # understates the bias flowing along " ←
$ → !. 

Third, if F < P, the estimator is biased because 78>.9 overstates the bias in 789.>: the 
association captured by the path " ← $ → # overstates the bias flowing along " ← $ →
!. 

Fourth, if P is more than twice as large as F, then 78>.9 may overstate the bias in 789.>  
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more than twofold, so that the Mayer/difference estimator 789.> − 78>.9 first subtracts all 
bias and then more than adds it back, resulting in absolute bias amplification.   

Fifth, if F and P have different signs, then 78>.9 measures the negative of the bias in 
789.> such that the difference estimator 7Y = 789.> − 78>.9 adds rather than removes bias, 
also resulting in bias amplification.  

We note that the difference estimator for future treatments has some history in social 
science methodology. Versions of this differencing logic are discussed by Gottschalk 
(1996), who explicitly uses future treatments (but not this exact estimator, see Appendix 
A), and by DiNardo and Pischke (1997) and Elwert and Christakis (2008), who analyze 
structurally similar models without future treatments.  
 
The Difference-Strategy of Future Treatments Is Different from Difference-In-
Difference 
Despite superficial similarities, the Mayer/difference strategy of future treatments differs 
from conventional difference-in-difference (DiD), or gain score, estimation. While both 
approaches assume the same qualitative causal structure for the DGP, shown in Figure 2, 
they impose different parametric constraints on this structure. Mayer’s approach 
interprets # as a future (post-outcome) value of the treatment and assumes that $ affects 
! and # equally, F = P.  By contrast, DiD interprets # as a lagged (pre-treatment) value 
of the outcome and assumes that $ affects " and # equally, G = P. As a result of these 
different constraints, the two methods lead to different estimators.  As is easily verified 
against the graph, with # as future treatment, the spurious association between " and ! is 
measured and removed by the conditional covariance between " and # given !. Hence, 
the Mayer/difference estimator is 7 = 789.> − 78>.9. With # as lagged outcome, the 
spurious association between " and ! equals the marginal covariance between # and !, 
and the DiD estimator is 7 = 789 − 79> . 
 
Choosing Between Future Treatment Estimators 
Next, we compare the performance of the two future-treatment strategies and provide 
guidance for choosing between them. We continue to assume that the data are generated 
by the model in Figure 2. 

Obviously, maximally cautious analysts should always prefer the control estimator, 
because, in contrast to the Mayer/difference estimator, it guarantees bias reduction when 
the data are produced by Figure 2, regardless of the relative size of the path parameters. 
Bias reduction with the control estimator, however, is often quite modest. For most 
values of the effect $ → !, F, the control estimator will remove less than half of the OLS 
bias unless the effect $ → #, P, is large, P > 0.7. In many cases, Mayer’s estimator will 
thus remove more bias than the control estimator.  

Analysts can sometimes decide between the two future treatment estimators by 
comparing the relative positions of the OLS, control, and Mayer/difference estimates. 
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Figure 4 illustrates the decision process. Since the control estimate, in expectation, is 
closer to the true treatment effect than the OLS estimate, the difference between the 
control and the OLS estimate reveals the direction of the OLS bias. For example, if the 
OLS estimate is 7HIJ = 0.5 and the control estimate is 7K = 0.3, then the true treatment 
effect should be no larger than the control estimate, 7 ≤ 0.3. The first decision rule thus 
states that if the control and Mayer/difference estimates change the OLS estimate in 
different directions (Figure 4-a), then the analyst should choose the control estimate as 
bias reducing and eschew the Mayer/difference estimate as bias increasing. Second, the 
control estimator is preferred as long as the Mayer/difference estimator does not differ 
more strongly from the OLS estimator in the same direction. For example, if the OLS 
estimate is 7HIJ = 0.5, the control estimate is 7K = 0.3, and the Mayer/difference 
estimate is 7W = 0.4 (Figure 4-b), then the control estimate is preferred. 
 

 
Notes: C = control estimate; D = Mayer/difference estimate; O = OLS estimate 

 
Figure 4. Illustration of the heuristic for choosing between estimates. The difference 
between the control and OLS estimates indicates the direction of OLS bias in data 
generated by Figure 2. The relative position of control, difference, and OLS estimates can 
help the analyst decide between alternative estimates. In scenarios (a) and (b), the control 
estimate is preferred. In (c), additional assumptions are needed to decide between the 
control and difference estimates.  
 

If the control and Mayer/difference estimators change the unadjusted OLS estimate in 
the same direction but the Mayer/difference estimator is farther away from the OLS 
estimate than is the control estimate (Figure 4-c), then it does not follow that the 
Mayer/difference estimator is automatically preferred. For example, with 7HIJ = 0.5, 
7K = 0.3, and 7W = 0.2, then the true effect could be closer to either the control estimate 
or the Mayer/difference estimate. Thus, the analyst would require additional knowledge 
about the relative size of effects $ → !, F, and $ → #, P, to decide between the control 
and Mayer/difference estimates. Two rules from Result 4, illustrated in Figure 3, help 
with this decision. First, if the analyst can argue that F and P share the same sign and that 



 

- 12 - 

the magnitude of F does not considerably exceed the magnitude of P, then the analyst 
should choose the Mayer/difference estimator because it will remove more bias than the 
control estimator. Second, if |P| ≫ |F| or if d and a have opposite signs, then the 
Mayer/difference estimator will increase the OLS bias, and the analyst should chose the 
control estimator. 

 
CHALLENGES TO BIAS CORRECTION WITH FUTURE 
TREATMENTS 
 
The DGP of Figure 2, analyzed so far, provides a best-case scenario for future-treatment 
strategies to reduce confounding bias in OLS regressions because it guarantees bias 
reduction for the control estimator and provides bias removal in the Mayer/difference 
estimator if F = P. In this section, we explain that both future-treatment strategies can 
increase bias in the presence of either (1) true state dependence, where past treatment 
causally affects future treatment, or (2) selection, where the outcome causally affects 
future treatment, or both. We demonstrate this failure by showing that both future-
treatment strategies can produce bias even when the unadjusted OLS estimate is 
unconfounded and hence unbiased. With either true state dependence or selection, 
choosing the best future-treatment strategy becomes a matter of carefully weighing prior 
knowledge about the underlying path parameters in the DGP. 
 
TRUE STATE DEPENDENCE: WHEN TREATMENT AFFECTS FUTURE TREATMENT 
Past and future values of the treatment are typically correlated over time. One reason for 
this association could be mutual dependence of ! and # on the unmeasured confounder $ 
along the path ! ← $ → #, as in Figure 2, which would justify the future-treatment 
strategies discussed above. Another reason for a correlation between ! and # could be 
true state dependence, where past states of the treatment cause future states of the 
treatment (Bates and Neyman 1951; Heckman 1981a; Heckman 1981b).8 True state 
dependence is captured by the arrow ! → # in Figure 5. Sociologists are amply familiar 
with cumulative advantage and cumulative disadvantage as important special cases of 
true state dependence. DiPrete and Eirich (2006:272) explain that cumulative 
(dis)advantage “becomes part of an explanation for growing inequality when current 
levels of accumulation have a direct causal relationship on future levels of 
accumulation.” For instance, individuals with higher incomes will be able to accumulate 
more financial assets that in turn generate asset income returns that grow at a higher rate 
than earnings (Piketty 2014). In this example, as in others, a causal story of true state 
dependence involves a causal mediator (here: income → financial asset acquisition → 

                                                
8 True state dependence is also a central challenge in the literature on dynamic treatment effects 
(Robins 1994; Wodtke and Almirall 2017). 
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income), and the strength of state dependence may be quite limited (e.g., for most people, 
asset income plays no appreciable role in determining their total annual income). 
 

 
Figure 5. An unconfounded study with true state dependence of treatment, ! → #. 
 

To build intuition for the problem of true state dependence, we first analyze the 
performance of future-treatment strategies when the effect of ! on " is not confounded 
(no arrow $ → !), as in Figure 5. Here, the marginal association between ! and " 
identifies the causal effect of ! on ", because the causal effect ! → " is the only open 
path between them. Hence, the unadjusted OLS estimate equals the true causal effect, 
7HIJ = 789 = 7, and the OLS estimator is unbiased. 

Future-treatment strategies are vulnerable to true state dependence because 
needlessly controlling for # introduces bias. Since # is a collider variable on the 
noncausal path ! → # ← $ → ", controlling for # opens this path and induces a spurious 
association between ! and ". Controlling for # in the regression of " on ! would 
therefore create bias where none existed before. This intuition is confirmed algebraically 
using Wright’s rules. The control estimator for data generated by Figure 5, with true state 
dependence and without confounding, evaluates to 

7K = 7b89.> = 7 − VLc
(DBcE)

 .      (13) 

Note that the control estimator in this scenario is biased even though the OLS 
estimator is not. As expected, the bias in the control estimator under true state 
dependence is a function of the path parameters on the noncausal path ! → # ← $ → "; 
d, P, FeP	G. The bias in 7K  increases with the strength of confounding between " and #, 
GP, in the numerator of the bias; and the bias increases especially strongly with the 
strength of state dependence, d, which increases the numerator and decreases the 
denominator of the bias.  

The Mayer/difference estimator for data generated by Figure 5, with true state 
dependence and without confounding, evaluates to 

 7W/Y = 	7 − VL(cBD)
(DBcE)

 .       (14) 

Note that the Mayer/difference estimator is also biased in this scenario, even though 
the OLS estimator is not. Comparing expressions [13] and [14] shows that true state 
dependence introduces less bias into the control strategy estimator than into the 
Mayer/difference estimator, unless true state dependence is strongly positive, d > 0.5. In 
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sum, both future treatment estimators can increase bias under true state dependence, but 
the control estimator will be less biased as long as true state dependence is not too large.  

Next, we analyze the empirically more interesting DGP of Figure 6, which combines 
Figure 2 with Figure 5 to form a scenario of true state dependence with unobserved 
confounding. Here, $ is a confounder of ! and #, which motivates the use of # as a 
proxy control to reduce bias in the OLS estimator, but ! also directly causes # via true 
state dependence, thus introducing bias into both future treatment estimators. Without 
further restrictions, the analytic expressions for the control and difference estimators are 
unwieldy and scarcely informative (not shown). Depending on the exact parameter 
constellation, both future-treatment strategies could reduce bias or increase bias in the 
OLS estimator. Hence, analysts must carefully consider existence, direction, and size of 
true state dependence in their empirical applications.  
 

 
Figure 6. A confounded study with true state dependence of treatment (combination of 
Figures 2 and 5) 
 

Nonetheless, future-treatment strategies remain promising if the analyst can defend 
certain parametric restrictions on the relative size of the path parameters. Consider, for 
example, the restriction that $ affects ! to the same extent as it affects #, F = P, as 
Mayer (1997) proposed for the effect of parent income on child outcomes.  

 
Result 6 (bias of the control estimator with true state dependence): In data generated by 
the model in Figure 6 with the constraint F = P, the control estimator evaluates to 

  7K = 7 + FG BcBc
EBMEcBMEUD

DB(cUME)E
= 7 + )HIJhK  .   (15) 

 
Result 7 (bias of the Mayer/difference estimator with true state dependence): In data 
generated by the model in Figure 6 with the constraint F = P, the Mayer/difference 
estimator evaluates to 

  7W/Y = 7 + FG BcBc
EBMEc

DB(cUME)E
= 7 + )HIJhW .    (16) 

 
The bias multipliers of the control and Mayer/difference estimators, hK  and hW, are 

obviously closely related, though their behavior is somewhat surprising. Simulations (not 
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shown) reveal several facts, summarized in Table 1: 
 

Result 8 (relative performance of the control and Mayer/difference estimators under 
confounding and true state dependence): In data generated by the model in Figure 6 with 
the constraint F = P, the following five facts hold: 

With (unrealistic) negative state dependence, d < 0, 
(1) The Mayer/difference estimator is strictly bias reducing, 0 < hW < 1, and 

strictly dominates the performance of the control estimator, hW < hK .  
(2) The control estimator becomes increasingly bias amplifying as true state 

dependence becomes increasingly negative.  
With (realistic) positive state dependence, d > 0, 
(3) The Mayer/difference estimator reduces bias less than the control estimator, 

|hK| < |hW|, under moderately strong state dependence, 0.37 ≲ d ≲ 0.5,  
(4) The Mayer/difference estimator is strictly bias amplifying, |hW| > 1, under 

strong positive state dependence, d ≳ 0.5.  
(5) The control estimator is strictly bias reducing up to moderately strong 

positive state dependence, 0 < d ≲ .06, and moderate confounding (|F| ≲
0.5). 

 
  

State Dependence (f) Bias with 
 Control Estimator Mayer/Difference Estimator 
   
   

Negative 
(d < 0) Amplified Reduced 

Positive, moderate 
(0.37 ≲ d ≲ 0.5) Reduced Weakly reduced 

Positive, strong 
(d ≳ 0.5) 

Reduced 
(up to d ≲ .06 & |F| ≲ 0.5) Strictly amplified 

   
Table 1. Performance of the control estimator and the Mayer/difference estimator in the presence 
of state dependence and assuming F = P. 

 
Table 1 underlines that true state dependence, which is a common concern in 

sociology, ruins the strict bias-reduction property of the control estimator. Nonetheless, 
under realistic values of mild positive true state dependence, both the control and the 
Mayer/difference estimators are bias reducing. For weak positive true state dependence, 
the Mayer/difference estimator removes more bias than the control estimator; and for 
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moderate and strong positive state dependence, the control estimator outperforms the 
Mayer/difference estimator and remains (strongly) bias reducing as long as the effects of 
$ on ! and # are not too large.  
 
SELECTION BIAS: WHEN THE OUTCOME AFFECTS FUTURE TREATMENT 
Selection also complicates future-treatment strategies for unobserved confounding. We 
say that selection is present when the outcome exerts a causal effect on the future value of 
the treatment, as captured by the arrow " → # in Figure 7. Selection is a concern in many 
situations. For example, in a study of the effect of parental income on educational 
attainment, college enrollment may affect parents’ income if parents adjust their labor 
supply to the financial needs of the child. In other scenarios, selection may be absent. For 
example, when studying the effect of parental income on children’s test scores, it is 
implausible to believe that children’s test scores affect future values of parental income 
(except, perhaps, when a child’s abysmal test scores inspire a parent to quit her job to 
tutor the child). 
 

 
Figure 7. An unconfounded study with selection, " → #. 

 
Figure 7 isolates the problems of selection. By assuming that the effect of ! on " is 

unconfounded. In this scenario, the unadjusted OLS estimator again recovers the true 
causal effect, 789 = 7: Since the unadjusted OLS estimator does not involve #, OLS does 
not suffer from selection bias. The control and difference estimators, however, do involve 
# and hence suffer selection bias, because controlling for # amounts to selecting on the 
outcome. 9 Algebraic derivation shows that the control strategy estimator without 
confounding but with selection evaluates to  

 7K = 789.> = 7 (DBlE)
DBlETE

= 7mK  ,      (17) 
and the difference strategy estimator evaluates to 

  7W/Y = 7 TBl
TBTEl

= 7mY .       (18) 

                                                
9 Figure 7 presents an example of post-outcome endogenous selection bias (Elwert and Winship 
2014). In the language of DAGs, " is a collider variable on the path ! → " ← $, and # is a 
descendant of ". Conditioning on a descendant of a collider induces an association between the 
collider’s immediate causes, i.e. between ! and $. Hence, conditioning on # induces a non-causal 
association between ! and " via $, which is the bias in the #-adjusted analysis. 
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Since mK ≠ 1 and mY ≠ 1 are pure bias terms, neither the control estimator nor the 
difference estimator recovers the true causal effect. It can be shown, however, that 
|mK| ≪ |mY|; that is, selection (without confounding) introduces far less bias into the 
control estimator than into the Mayer/difference estimator, especially for small treatment 
effects ! → ". Note that bias in the control and Mayer/difference estimators with 
selection depends on the size of the treatment effect, 7.  
 

 
 
 Figure 8. A confounded study with selection, " → #. 
 

Finally, Figure 8 shows the empirically important scenario with both selection and 
confounding (combining Figures 7 and 2, respectively). The corresponding analytic 
expressions for the control and Mayer/difference estimators are highly non-linear.  

 
Result 9 (bias in the control estimator with selection): In data generated by Figure 8, the 
control estimator evaluates to 
 7K = 789.> =

(T	U	MV)	B	(TMLU	l	U	VL	)	(Tl	U	MVl	U	ML)
D	B	(Tl	U	MVl	U	ML)E

= 7 + )HIJoK  ,  (19) 

 
Result 10 (bias in the Mayer/difference estimator with selection): In data generated by 
Figure 8, the Mayer/difference estimator evaluates to 
 7Y =

(T	U	M	V)–	(T	M	L	U	l	U	V	L)
D	–	(T	l	U	M	V	l	U	M	L)

= 7 + )HIJoY  .     (20) 

 
The bias-reduction properties of both future treatment estimators with confounding 

and selection strongly depend on the underlying path parameters. Simulations (not 
shown) suggest that the Mayer/difference estimator is usually performing worse, and 
often dramatically so, than the control estimator as long as the path parameters, *, are not 
too large, |*| < 0.5. Specifically, any hint of selection, q ≠ 0, threatens to turn the 
Mayer/difference estimator into a bias amplifier. By contrast, as long as selection is mild, 
q ≲ 0.3, the control estimator remains bias reducing, though bias reduction can be small 
in absolute terms.10 

Table 2 summarizes the divergent performance of the control and the Mayer/different 
estimator. The upshot is that for scenarios in which path parameters are at most 
moderately strong (≤ 0.5), the control strategy generally carries the day. Since the 
                                                
10 When the control estimator increases bias, it does so negligibly.  
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control strategy without selection is strictly bias reducing and only minimally biased by 
selection, it tends to remove some bias overall. By contrast, the Mayer/difference strategy 
is strongly bias reducing without selection, but can induce heavy bias with selection, and 
so it is to be used with caution. 
 

  
Selection (e) Bias with 
 Control Estimator Mayer/Difference Estimator 
   
   

Selection 
(q ≠ 0) 

Negligibly amplified or 
weakly reduced (see below)  Mostly amplified 

Mild Selection 
(q ≲ 0.3) Weakly reduced Mostly amplified 

   
Table 2. Performance of the control estimator and the Mayer/difference estimator in the presence 
of selection and with * < 0.5 
 
 
A FUTURE-TREATMENTS TEST FOR UNOBSERVED 
CONFOUNDING 
	
Importantly, beyond bias reduction and bias removal, we can also employ future 
treatments to test for the absence of unobserved confounding in the causal effect of ! on 
". ! and " are unconfounded if no cause of ! also causes ". The Null hypothesis of no 
confounding is thus encoded by the absence of the arrow $ → " in Figure 9a.  

The test is straightforward. If we assume, as we have before, 
A1: All factors U that affect ! also affect #, 

then conditional independence between # and " given !, " ⊥ #|!, implies the absence of 
unobserved confounding between ! and ". 

If, furthermore, we assume 
A2: " does not cause # (no selection), 

and 
A3: # and " share no common causes outside, possibly, of $, 

then non-independence between # and " given !, "					#|!, implies confounding between 
! and ". (Proofs follow directly from d-separation [Pearl 2009].) 
 Figure 9 illustrates the logic of the test, and the importance of the three 
assumptions A1-A3 for various DGPs.  

We note that rejecting the Null of no unobserved confounding in the causal effect 
! → " in favor of the alternative of unobserved confounding requires weaker 
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assumptions than removing the bias. Specifically, the test of no-confounding does not 
require (a) the absence of true state dependence, ! → # or (b) linearity, or, for that 
matter, any parametric assumptions. Hence, we can test for unobserved confounding even 
if we cannot identify and consistently estimate the causal effect of T on Y using the 
control or Mayer/difference strategies, as in Figure 9. 

Under assumptions A1-A3, any non-parametric or parametric test for conditional 
independence between # and " given ! is a valid test of no confounding. For example, in 
a linear model, testing the !-adjusted regression coefficient st:	78>.9 = 0, against 
sv:	78>.9 ≠ 0, using a conventional two-sided t-test, is a valid test of the null hypothesis 
of no confounding.11  
 

                 
 

     (a)     (b)            (c) 
 

                    
 

     (d)     (e) 
 
Figure 9. (a) The absence of the arrow $ → " encodes the Null hypothesis of no-
confounding between ! and ". Since A1 is met, conditional independence between " and 
# given ! implies the absence of confounding between ! and ". (b) Since A1-A3 are 
met, a conditional association between " and # given ! implies the existence of the 
arrow $ → ", i.e. confounding between ! and ". (c) Assumption A1 is violated by the 
absence of the arrow $ → #. The conditional independence between " and # given ! 
does not imply the absence of confounding between ! and ". (d) Assumptions A2 is 
violated by the existence of the arrow " → #. The conditional association between " and 
# given ! does not imply confounding between ! and ". (e) Assumption A3 is violated 
by the existence of the arrows " ← w → #. The conditional association between " and # 
given ! does not imply confounding between ! and ". 

                                                
11 Mayer (1997) originally suggested this test for the linear DGP of Figure 2. Here, we add, first, 
that the logic of this test generalizes non-parametrically, i.e. is valid for all functional forms, and, 
second, that it also holds for DGPs other than Figure 2, as long as assumptions A1-A3 hold.  
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 In sum, even where future treatment strategies may fail in reducing unobserved 
bias, a simple, non-parametric test for the absence of unobserved bias is available and 
holds promise across a wide field of applications. 
 
 
EMPIRICAL ILLUSTRATION 
 
MOTIVATION 
We illustrate the utility of future-treatment strategies by elaborating on Mayer’s (1997) 
original empirical example of the effect of parental income on children’s educational 
attainment. More than merely of historical interest, the example remains salient for 
contemporary debates on intergenerational transmission, which are plagued by concerns 
about unobserved confounding (Sobel 1998; Morgan and Winship 2015).12 

Suppose that an analyst wants to know whether an observed association between 
parents’ income and the educational attainment of their children suffers from unobserved 
confounding bias. An argument in favor of a causal effect of parental income could be 
made as follows (see also Mayer 1997: 45ff): High income allows parents to make higher 
monetary investments in their children’s education (Kornrich and Furstenberg 2012; 
Schneider et al. 2018), for instance by providing private tutors (Buchmann et al. 2010), 
which ultimately leads them to educational success. On the other hand, the association 
between parental income and children’s educational success could also be due to 
unobserved confounding. Parents’ ability, attitudes, and behaviors could determine not 
only their own income but also directly influence the educational success of their 
children.  
 
DATA 
We analyze data from the Panel Study of Income Dynamics (PSID). In an effort to 
replicate the estimates provided by Mayer (1997), we closely follow her decisions in the 
construction of the analytic samples (covering birth cohorts 1954 through 1968) and 
variables as described there (in particular, ibid: 161ff). The main outcome of interest, ", 
is children’s years of education completed by age 24 (xqFe = 12.9, zP	 = 2.0; see also 
descriptive statistics in Appendix Table C.1). The treatment variable, !, is logged family 
income in 1992 dollars, measured at children’s ages 13 through 17 (5-year averages). The 
future treatment variable, #, is logged family income in 1992 dollars, measured at 
children’s ages 25 through 29 (5-year averages). The list of observed confounders, {, 
includes logged family size, whether the child’s household head is black, parental age of 
the younger parent, the highest years of education attained by either parent, and whether 

                                                
12 In fact, at the time of this writing, an ambitious randomized control trial is about to be 
implemented to directly adjudicate the causal effects of parental income on child development 
(Duncan et al. 2017). 
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the child is male. The analytic sample size for the future treatment regressions is 
N=1,513. All analyses are weighted based on the child’s individual survey weight in 
1989. All variables are standardized (mean zero and variance one). A replication package 
containing the data and code used for this analysis is available online at [HIDDEN]. 
 
RESULTS 
Our analyses replicate Mayer’s published results almost perfectly. For instance, in her 
main analyses (based on cohorts born between 1954 and 1968), Mayer estimates the 
unstandardized coefficient of logged family income on children’s years of education to be 
0.78	(zq = 0.07), compared to our estimate of 0.76	(zq = 0.07). We observe an even 
closer correspondence in the analytic subsample (for which future income measures are 
available; birth cohorts 1954-1964) with a standardized coefficient estimate of 0.19 in 
both hers and our analysis (for full results see also Appendix Table C.2). 

Our empirical illustration of future treatment strategies applies OLS regression 
models to the same data, predicting the outcome (", years of education) based on 
different combinations of the regressors of interest: the treatment (!, parental income), 
the future treatment (#, future parental income), and all observed control variables 
mentioned above ({). Table 3 reports four different model specifications that we draw on 
to demonstrate the use of different future-treatment strategies under various assumptions 
about the DGP. Model 1 displays the unadjusted association between parental income (T) 
and offspring’s educational attainment (Y). Without controlling for any observed 
confounders (X), we expect the association between ! and " to provide a biased estimate 
of the causal effect. For illustration purposes, it is helpful to first apply future-treatment 
strategies to a treatment-effect estimate that we know to be biased. Therefore, in model 2, 
we add the future treatment (F), but no further controls, to the model. The comparison 
between model 1 and model 2 will thus be used to show how future-treatment strategies 
produce expected answers in a situation of bias. The more realistic scenario encountered 
in empirical applications, of course, is that the analyst has already exhausted the options 
to adjust for observable differences, reflected in model 3, which includes all control 
variables used in the original analyses by Mayer (1997). In model 4, we then add a 
control for the future treatment to illustrate the conclusions drawn from future-treatment 
strategies in the typical empirical setting without prior knowledge about the existence and 
direction of unobserved bias. 

We contrast the conclusions drawn based on the control strategy, the 
Mayer/difference strategy, and our non-parametric test under various assumptions about 
the DGPs. 
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Table 3: Estimating the causal effect of parental income on children's years of 
education with and without future treatments 
Standardized OLS regression coefficients (standard errors in parentheses); weighted 

 
 
BEST CASE SCENARIO 
We begin by assuming what we have described as the best-case scenario, the DGP of 
Figure 2. This scenario starts from the central assumption that all confounders of ! also 
affect #. Furthermore, it assumes the absence of true state dependence (no arrow ! → ") 
– that is, changes in parental income during middle childhood (ages 13-17) have no 
causal impact on parental income during offspring’s young adulthood (ages 24-29). 

(1) (2) (3) (4)

Coefficients

     T: Parental Income 0.448 *** 0.319 *** 0.185 *** 0.118 **
(0.037) (0.039) (0.038) (0.039)

     F: Future Parental Income 0.274 *** 0.202 ***
(0.031) (0.029)

     X: Controls Yes Yes

Difference in coefficients
     T minus F 0.045 -0.084

(0.059) (0.054)

Equivalence of T coefficients: p-values
          Model (1) vs. (2): 0.0006
          Model (1) vs. (3): 0.0000
          Model (3) vs. (4): 0.0006
          Model (1) vs. (4): 0.0000

N 1,513 1,513 1,513 1,513

Statistical significance at + p<.10, * p<.05, ** p<.01, and *** p<.001 (two-tailed test)
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Finally, it assumes the absence of selection (no arrow " → #) – that is, children’s years 
of education do not cause changes in their parents’ income. 

We begin with the test for absence of unobserved bias in the unadjusted 
association between parental income, !, and child’s educational attainment, ". Model 1 
gives this unadjusted association as 789 = 0.448 (* < .001). We have argued that the 
test of no unobserved confounding amounts to testing the null hypothesis that the !-
adjusted regression coefficient on # is zero, 78>.9 = 0. In model 2, this null hypothesis is 
safely rejected (* < .001). Hence, we conclude that the naïve, unadjusted, estimate of 
model 1 suffers from unobserved bias, which appears plausible. 

Now that we believe in the existence of bias, we use the control strategy to reduce 
it. The control strategy calls for a focus on the #-adjusted treatment effect, estimated as 
789.> = 0.319	(* < .001) in model 2, which is significantly less than the unadjusted 
association between parental income and child’s educational attainment in model 1 
(789 − 789.> = 0.448 − 0.319 = 0.129	[* < .001]). By Result 2, we know that the 
control strategy is strictly bias reducing under the DGP of Figure 2. Thus, we conclude 
that the #-adjusted estimate from model 2 is closer to the true treatment effect than the 
naïve estimate without #-adjustment of model 1; the naïve treatment effect estimated in 
model 1 is upwardly biased. 

The Mayer/difference method, applied to model 2, estimates the treatment effect 
as the difference between the partial coefficients on ! and #, 789.> − 78>.9 =
0.319	– 	0.274	 = 	0.045	(* = 0.445). We note that this estimate is again lower than the 
naïve estimate of the treatment effect (789 = 0.448) and also lower than the control 
estimate (789.> = 0.319). Earlier, we showed that the Mayer/difference estimate is 
potentially more powerful in reducing bias than the control strategy, but that – unlike the 
control strategy – it may also amplify bias. 

From the application of the control strategy we learned that the naïve estimate of 
model 1 is upwardly biased. If the Mayer/difference estimator had yielded a higher 
estimated treatment effect than the naïve estimate (cf. Figure 4a), we would have 
concluded that the Mayer/difference strategy amplifies rather than reduces existing bias. 
If, by contrast, the Mayer/difference estimator had fallen between the naïve and the #-
adjusted estimate of the treatment effect (Figure 4b), we would have concluded that the 
difference strategy is less effective in reducing bias than the control strategy. In both 
instances, we would have preferred the control estimate to the Mayer/difference estimate. 

In the case of our specific application, however, the Mayer/difference estimate 
corrects the naïve estimate in the same direction as, but more strongly than, the control 
estimate (Figure 4c). Yet, without further assumptions about the strength of the path 
parameters, we do not know whether the Mayer/difference estimate is closer to the true 
causal effect than the control estimate. The most conservative analyst may therefore 
prefer the estimate provided by the control strategy in this empirical application noting, 
however, that bias reduction may be relatively modest unless the effect $ → # is very 
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large. In some applications, the analyst may have reasonable expectations about the 
direction and sign of the effects $ → !, F, and $ → #, P. In our example, an analyst may 
assume that the multifold characteristics of parents that are not controlled for in these 
models, $, impact parental income in the same direction at ! and #, i.e., F and P have the 
same sign. Then, unless the effect $ → #, P, is much larger than the effect $ → !, F, the 
analyst should prefer the Mayer/difference estimator as the strategy to reduce the most 
bias. In sum, in this empirical example, the decision between the control and the 
difference estimator depends on how defensible the analyst’s additional assumptions 
about the relative size of the effects $ → ! and $ → # are. If the analyst prefers the 
Mayer/difference strategy estimates, then one should note that this estimate is not 
statistically different from zero (* = 0.445). This would cast doubt on the proposition 
that an increase in parental income causes any improvement in children’s educational 
attainment. 

 
Next, we turn to the more common scenario in which we estimate a treatment 

effect controlling for observables (model 3). This covariate-adjusted model estimates the 
treatment effect as 789.� = 0.185	(* < .001). This estimate is much lower (* < .001) 
than the unadjusted association of model 1 and indicates that the reduced control strategy 
estimate of model 2 correctly determined the positive direction of the bias. 

Although, in model 3, we draw on a number of important control variables, the 
critical analyst will still worry about unobserved bias. These concerns are addressed in 
the future-adjusted model 4. Again, the null hypothesis of no unobserved bias cannot be 
rejected since the coefficient on #, 78>.9� = 0.202 is significantly different from zero 
(* < .001). Confirming the presence of unobserved bias certainly provides license to 
apply future treatment adjustments that may reduce bias.13 

The control estimate of model 4 is again lower than the baseline treatment effect 
of model 3 (789.>� = 0.118 vs. 789.� = 0.185 [* < 0.001]), again indicating that the 
former corrects for remaining upward bias in the latter. The correction is more modest 
than before but statistically significant (789.� − 789.>� = 0.185 − 0.118 = 0.067	[* <
.001]). Between models 1 and 2, the correction was larger – about twice the size – since 
there we put a greater burden on the future treatment control to reduce bias in the absence 
of any control variables. By contrast, in model 3, there should be less unobserved bias to 
control for. The Mayer/difference method estimates the treatment effect to be yet smaller 
and even negative, at 789.>� − 78>.9� = −0.084	(* = 0.119), though statistically 

                                                
13 If our test had not detected bias (i.e. if the estimate of 78>.9� on F was indistinguishable from 
zero), bias could still be present: Failure to detect bias is different from confirming the absence of 
bias. A conservative analyst would then be yet more sensitive to the possibility of bias 
amplification in a situation that potentially does not suffer from existing bias. 
 



 

- 25 - 

indistinguishable from zero at customary levels of statistical significance.14 As before, 
absent additional assumptions about the relative strength of the effects $ → ! and $ →
#, we cannot be certain that the Mayer/difference estimate is closer to the true treatment 
effect than the control estimate. 

 
For a final step of this illustration, let us put aside the concerns about remaining 

unobserved bias and instead accept the control estimate of model 4 (789.>� = 0.118) as 
the true treatment effect.15 In this scenario, we would accept and expand some of the 
conclusions drawn from model 2. The model without adjustments for observables (model 
1) is upwardly biased (0.448 vs. 0.118 [* < 0.001]), as previously concluded based on 
the control estimate from model 2 (0.319), which removed some but not all upward bias 
in the treatment effect of model 1. The Mayer/difference method of model 2 eliminated 
all upward bias but introduced downward bias (providing an estimate lower than the 
hypothetical true treatment effect). Overall, though, the Mayer/difference estimator of 
model 2 is closer to the assumed true treatment effect (|0.045 − 0.118| = 0.073) than 
the control estimator (|0.319 − 0.118| = 	0.201) and thus preferred in the setting of a 
model without further observed controls. The unlikely conditions needed for either 
future-treatment strategy to fully eliminate bias (P = 1 for the control method, and F = P 
for the difference method) do not hold in this application. 
 
TRUE STATE DEPENDENCE AND SELECTION 
Next, we revisit the interpretation of the results presented in Table 3 under different 
assumptions about the DGP – true state dependence and selection – which we have 
shown to pose challenges to future-treatment strategies. 

As mentioned, sociologists are well accustomed to cumulative advantage 
arguments. In our empirical example, one may suspect that parents’ income growth 
depends on their baseline income. One scenario of such true state dependence was 
discussed above as higher income enabling access to financial assets and their returns. 
Even under true state dependence, however, the test for the absence of unobserved bias is 
valid. The conclusions remain the same as those discussed above: We would rule out that 
the treatment effect estimate is unbiased in all models shown. With state dependence, 

                                                
14 Interestingly, while we successfully replicate Mayer’s main estimates, our estimate of the 
Mayer/difference estimator is quite different. Her analyses suggests a quite modest drop from 
0.186 in model 3 to 0.168 in model 4 (ibid: pp. 92), ours show a much larger drop from 0.185 to a 
statistically insignificant estimate of -0.084. The conclusions that may be drawn from our 
estimate –no causal relationship between parental income and children’s educational attainment – 
are in fact more supportive of the general conclusions drawn by Mayer (1997). 
15 In this example, and conditional on the assumed DGP, the substantive interpretation of this 
estimate (unstandardized effect size of 0.4282) is that an increase in parental income by 10% 
leads to an increase in children’s educational attainment by about half a month (0.4282 ∗
ÅÇÉ(1.1) ∗ 12 = 0.49). 
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however, using the control or Mayer/difference estimator to reduce this bias in model 1 
requires new assumptions about the size of certain path parameters, because now even the 
control estimator is not strictly bias reducing anymore. Most important, this includes 
assumptions about confounding itself. For example, we could assume that the effects 
$ → ! and $ → # are of the same size (F = P) and that confounding is of, at most, 
moderate size (|F| ≲ 0.5) –the latter assumption is less credible for model 1. Second, our 
choice between the control and Mayer/difference estimator is dictated by assumptions 
about the direction and degree of state dependence. That is, if state dependence is 
negative or at best weakly positive, the Mayer/difference estimator is the better choice. 
However, if state dependence is moderately (d ≳ 0.37) or strongly positive (d ≳ 0.5), 
the control estimator is the better choice. The stakes involved in making these 
assumptions are quite high. If they are wrong, future-treatment strategies may amplify 
bias (namely, the control estimator if state dependence is negative and the difference 
estimator if state dependence is strongly positive). Existing empirical work on the 
dynamics of income poverty (in essence, a dummy variable version of our treatment 
variable) suggest state dependence to be positive and large (e.g. Cappellari and Jenkins 
2004, Biewen 2009), which would lead one to prefer the control estimator. 

In our empirical example, selection, " → #, may be of concern, for instance if the 
children’s decision not to enroll in college and instead begin work may cause parents to 
reduce their labor supply as the need for intergenerational transfers declines. While such 
selection story may be plausible  for certain subgroups of the population, we are not 
aware of well-identified estimates of large selection effects. Still, what does the worry 
about selection imply for the utility of different future-treatment strategies for detecting 
and removing bias? Unfortunately, the test for the absence of unobserved bias is no 
longer valid under selection. The attractiveness of the difference method is drastically 
reduced as its bias-amplification property becomes more pronounced. Those who assume 
selection to be a concern in our empirical example should refrain from both an 
interpretation of the test and the difference estimator. However, the control estimator 
would remain useful because if there is confounding, and if selection is mild, then the 
control estimator remains bias-reducing. Hence, the control estimator would remain the 
preferred estimate. 
 
 
CONCLUSION 
The problem of unobserved confounding is profound. Most research in the social 
sciences is observational and observational studies cannot rule out bias from unobserved 
confounding. The direction and especially the size of the bias are often difficult to gauge, 
in part because the bias could originate in confounders that are as yet unknown to 
science. 
 In this paper, we have discussed future values of the treatment variable as a tool 
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for detecting, reducing, and removing bias from unobserved confounding. Future 
treatments have occasionally been used for bias removal in prior research. Here, we have 
subjected several easily computed future-treatment strategies to a detailed analysis, 
introduced a new strategy, and compared the relative strengths and weaknesses of these 
estimators to each other and to baseline conventional regression estimates. While we 
identify challenges to future-treatment strategies, we do not stop there. To maximize the 
usefulness of future treatment estimators in applied research, we also demonstrate how 
additional assumptions about effect sizes can help choose between them and inform their 
interpretation. 
 The idea behind future-treatment strategies is intuitive: any variable that affects 
the treatment variable before the outcome likely also affects it after the outcome has been 
measured. In other words, future treatments can proxy for unobserved confounding. We 
have used this insight directly and proposed controlling for future treatments using what 
we have termed the control estimator. This estimator has the great advantage of being 
strictly bias reducing for some linear data generating processes.  
 Analyzing important prior future-treatment strategies, we have noted that Mayer’s 
(1997) estimator is not strictly bias reducing even in the best-case scenario, and may in 
fact amplify OLS bias. The same is true of Gottschalk’s (1996) future treatment estimator 
(Appendix A). Nonetheless, Mayer’s estimator holds promise because, in certain 
situations, it reduces bias more than the control estimator.  
 Future-treatment strategies have several advantages over other strategies for 
dealing with unobserved confounding. One advantage lies in the ready availability of 
future treatment measures in most panel data. Another is the ease of implementation –
including future treatments as control variables in a conventional regression analysis. In 
contrast to fixed-effects estimation, future-treatment strategies to reduce unobserved bias 
do not require repeated measures of the outcome, nor do they require long panels (three 
periods suffice; see also Vaisey and Miles 2017 for a critical discussion of fixed-effects 
estimation based on three observation points). As such, several recent survey innovations 
provide attractive data for the application of the future-treatment strategy, e.g., the recent 
longitudinal extension of the General Social Survey (GSS) to three-wave panels (Hout 
2017) or the newly redesigned Survey of Income and Program Participation (SIPP) as a 
four-wave panel. Finally, future-treatment strategies can be used for the dual purpose of 
detecting and reducing—sometimes even removing—unobserved confounding. Indeed, 
we have shown that future treatments can detect the presence of bias even in situations in 
which they cannot reduce this bias, and without any parametric assumptions. 
 A limitation shared with all strategies to remove bias from unobserved 
confounding is that causal treatment effect estimation based on observational data 
requires detailed knowledge of the data-generating process. We have highlighted two 
conditions that pose particular challenges for future treatment estimators: true state 
dependence (when prior treatment causally affects future treatment) and selection (when 
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the outcome causally affects future treatment). In both scenarios, all future treatment 
estimators can increase rather than decrease bias in OLS estimates. And whereas 
selection may be ruled out in many substantive applications, true state dependence often 
remains a credible threat. Based on our analytic results, however, we have argued that the 
control estimator remains bias reducing for moderate confounding under moderate true 
state dependence, and is surprisingly robust to selection as well. 

Since future-treatment strategies make different demands on the data-generating 
process than fixed-effects or instrumental variables estimators, and because measures of 
future treatment measures are widely available in panel data, future-treatment strategies 
promise help where other popular strategies fail. 
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APPENDIX A. GOTTSCHALK’S FUTURE-TREATMENT STRATEGY 
 
A third future treatment estimator was introduced by Gottschalk (1996). Like Mayer 
(1997), Gottschalk (1996) premises his analysis on the DGP of Figure 2 and derives a 
future treatment estimator from its covariance structure. Unlike Mayer, Gottschalk 
explicitly motivates his estimator with an argument that resembles our difference logic: to 
use the association between # and " first to measure and then to subtract bias in the 
association between ! and ". 
 

Definition 4 (Gottschalk’s estimator16): Gottschalk’s estimator for the causal effect of 
! on ", 7, is given by  

  7Ñ = 789 − <8>.9 = <89 − (<8> − <89<9>) .   (A.1) 
 

This estimator is similar, but not identical, to the Mayer/difference estimator. Whereas 
the difference estimator subtracts two partial regression coefficients, 7Y = 789.> − 78>.9, 
Gottschalk subtracts a conditional covariance from the unadjusted regression of " on !.  

Like Mayer’s (1997) estimator, Gottschalk’s estimator is biased when $ affects ! and 
# differently, F ≠ P. 

 
Result A.1 (bias of Gottschalk’s [1996] estimator in the best case): Gottschalk’s 
estimator is biased when data are generated by the model in Figure 2, 

  7Ñ = 7 + FG Ö1 − L
M
+ FPÜ = 7 + )HIJNÑ,    (A.2) 

 
But contrary to Gottschalk’s claim (his equation 4c), and in contrast to Mayer’s (1997) 

estimator, this estimator is not unbiased in the best-case model of Figure 2 when F = P.  
 

Corollary A.1: Gottschalk’s estimator remains biased when data are generated by the 
model in Figure 2 and $ affects ! and # in the same way, F = P,  

  7Ñ = 7 + FáG ≠ 7.        (A.3) 
 
Like the Mayer/difference estimator, but unlike our control estimator, Gottschalk’s 
estimator can increase rather than decrease the bias from unobserved confounding when 
F ≠ P. Like the Mayer/difference estimator, Gottschalk’s estimator strictly increases bias 
when F and P have opposite signs. Interestingly, however, unlike Mayer’s estimator, 
Gottschalk’s estimator is mostly bias reducing when F and P share the same sign and F is 
strong or moderately strong. Indeed, for magnitudes of |F| larger than about 0.42 
(regardless of the value of P), Gottschalk’s estimator is strictly bias-reducing. 

                                                
16 Our notation is superficially different from Gottschalk’s original notation since we assume 
standardized variables (without loss of generality).  
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APPENDIX B. FUTURE TREATMENTS AS INSTRUMENTAL 
VARIABLES 
 
This appendix evaluates the circumstances under which future treatments can, or cannot, 
serve as instrumental variables (IV). Instrumental variables analysis is a popular strategy 
for removing bias from unobserved confounding. With a valid IV, #, the causal effect of 
treatment ! on outcome " in linear DPGs is consistently estimated by the covariance 
ratio 

  7àâ =
?C@
?CA

 .        (B.1) 

IV analysis in linear models requires two assumptions: (1) the instrumental variable 
must be associated with ! (“relevance”); and (2) the IV must be associated with the 
outcome only via paths that include the causal effect of the treatment on the outcome 
(“exclusion”) (Brito and Pearl 2002). If both assumptions are met, we say that the 
instrumental variable is valid. 

Future treatments are not valid instrumental variables in any of the DGPs considered 
in the main body of this paper. The key assumption motivating our future-treatment 
strategies–that # is a proxy for the unobserved confounder, $–violates the exclusion 
assumption because it induces an association between # and " via the open path # ←
$ → ". 

For example, the instrumental variables estimator, using # as instrumental variable, 
in data generated by Figure 2 would evaluate to   
 7àâ =

?C@
?CA

= TMLUVL
ML

= 7 + V
M
≠ 7 .      (B.2) 

Recalling that all path parameters lie in the interval (−1, 1), it is obvious that the 
instrumental variables estimator in this case is strictly more biased than the OLS 
estimator because  
 |)HIJ| = |FG| < | M

V
| = |)àâ|, for all F, G ≠ 0 .    (B.3) 

 Nonetheless, future treatments have previously been used as instrumental 
variables, when # was assumed not to be a proxy for the unobserved confounders $. For 
example, Duncan et al. (1997) cautiously defend such a scenario for the estimation of 
causal neighborhood effects. In their application, " is children’s test scores, ! is parents’ 
neighborhood environment while living with the child, and # is parents’ neighborhood 
environment after the child has moved out. Their central assumption is that $ can be 
partitioned into two independent components, as shown in Figure B.1: $D represents 
unobserved parenting quality, which affects child test scores and neighborhood choice 
while the child lives at home; and $S represents parent’s residential preferences aside 
from child rearing considerations.  
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Figure B.1. Model in which future treatments, #, are a valid instrumental variable for the 
effect ! → ", because the unobservables, $, are suitably partitioned.  
 

If this model is true, then # is indeed a valid instrument for the effect of ! on ", 
and the instrumental variables estimator evaluates to  
 7àâ =

?C@
?CA

= MTL
ML

= 7.         (B.4) 

 As Duncan et al. (1997) have noted, this model may not be especially robust. 
Instrumental variables estimation would fail under small modifications of the original 
model, e.g., if parenting, $D, is associated with future neighborhood conditions (ibid: p. 
249), perhaps because concerned parents move to better neighborhoods, or if parent’s 
neighborhood preferences, $S, are associated with other unobserved factors, such as 
parental ability, that also affect child test scores (ibid: p. 230). We capture these scenarios 
in Figures B.2a and B.2b, in which the instrumental variable estimator evaluates to 7àâ =
7 + äã

åäUML
≠ 7  and  7àâ = 7 + V

M
≠ 7, respectively. In both of these more elaborate 

scenarios, # is not a valid instrumental variable because it is a proxy for one or another 
unobserved confounder, $D or $S, of ! and ", and hence violates the exclusion condition 
via the open paths # ← $D → " and # ← $S → ", respectively. 

 

(a)            (b) 

   

Figure B.2. Two models in which future treatments are not valid instrumental variables 
for the effect ! → ". 
 
We further note that # also fails as an instrumental variable even if # is not a proxy for 
unobserved confounders of ! and ", namely in the presence of true state dependence or 
selection. True state dependence would occur in Duncan et al.’s (1997) scenario if 
parents develop a taste for the kind of neighborhood they live in (Deluca 2012), as shown 
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in Figure B.3a. In this scenario, the exclusion assumption is violated because # is 
associated with " via the open path # ← ! ← $D → " (i.e. via a path that does not include 
the causal effect of ! on "). Consequently, the instrumental variables estimator is biased, 
7àâ = 7 + cåã

MLUc
≠ 7. 

 
 (a)            (b) 

   
 
Figure B.3. True state dependence and selection invalidate future treatments as 
instrumental variables for the effect ! → ".  
 

Selection would occur if children’s test scores affect parents’ future residential 
choice, as shown in Figure B.3b (an admittedly far-fetched proposal, unless, e.g., families 
relocate in response to children experiencing academic difficulties at a local school). 
Here, the exclusion condition would be violated because # is directly associated with ", 
and the instrumental variable estimator evaluates to  

7àâ = 7 + l
MLUl(TUåã)

≠ 7 .       (B.5) 

In a final twist, although true state dependence (! → #) and selection (" → #) 
invalidate the use of future treatments as instrumental variables, Chan and Kuroki (2010) 
have shown that descendants of ! and " (which could include future values of the 
treatment) can sometimes be used to remove unobserved confounding in linear models if 
true state dependence and selection are suitably mediated in more complicated DGPs. 
Their results are akin, but not identical, to instrumental variables analysis. To the best of 
our knowledge, Chan and Kuroki’s methodological results have not yet been used in 
empirical applications. 
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APPENDIX C. REPLICATION OF MAYER 
 

Table C.1. Descriptives 
Means (standard deviations in parentheses); weighted 

 

  

Main Sample Analytic Sample
Mayer (1997) Replication Mayer (1997) Replication

Years of Education 12.793 12.838 (a) 12.886
(1.940) (1.928) (a) (1.957)

Log family income 10.687 11.840 (a) 11.938
(0.572) (0.447) (a) (0.357)

Log family size 1.647 1.576 (a) 1.609
(0.331) (0.331) (a) (0.338)

Parent is black 0.141 0.151 (a) 0.170
(0.347) (0.358) (a) (0.376)

Parent's age 40.127 40.691 (a) 40.899
(6.163) (5.908) (a) (5.646)

Parent's years of education 12.590 12.593 (a) 12.663
(2.722) (2.768) (a) (2.859)

Child is a boy 0.481 0.494 (a) 0.717
(0.498) (0.500) (a) (0.450)

Observations 3,275 3,357 1,853 1,513

Estimates as reported in Mayer (1997), Table A.2 (pp.162-163); (a) Estimates not reported
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Table C.2. Full Regression Results 
OLS coefficient estimates (standard errors in parentheses); weighted 

 

Main Sample Analytic Sample
Unstandardized Coefficients Standardized Coefficients

Mayer (1997) Replication Mayer (1997) Replication

Log family income                  0.784 0.749 0.186 0.185
                                   (0.065) (0.074) (a) (0.038)
Log family size                    -0.714 -0.700 (a) -0.157
                                   (0.091) (0.092) (a) (0.025)
Parent is black                    0.257 0.276 (a) 0.031
                                   (0.091) (0.088) (a) (0.034)
Parent's age                       0.023 0.033 (a) 0.115
                                   (0.005) (0.005) (a) (0.025)
Parent's years of education        0.235 0.293 (a) 0.476
                                   (0.013) (0.011) (a) (0.026)
Child is a boy                     -0.032 -0.181 (a) 0.008
                                   (0.059) (0.057) (a) (0.026)
Constant 1.651 0.082 (a) -0.042
                                   (0.652) (0.824) (a) (0.030)

N                                  3,275 3,357 1,853 1,513
R2 0.265 0.274 (a) 0.301

Estimates as reported in Mayer (1997), Table B.6 (p.174) for main sample, Table 5.3 (p. 92) for 
analytic sample; (a) Estimates not directly reported in Mayer (1997)
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